Automated Statistics Collection in DB2 UDB

نویسندگان

  • Ashraf Aboulnaga
  • Peter J. Haas
  • Sam Lightstone
  • Guy M. Lohman
  • Volker Markl
  • Ivan Popivanov
  • Vijayshankar Raman
چکیده

The use of inaccurate or outdated database statistics by the query optimizer in a relational DBMS often results in a poor choice of query execution plans and hence unacceptably long query processing times. Configuration and maintenance of these statistics has traditionally been a time-consuming manual operation, requiring that the database administrator (DBA) continually monitor query performance and data changes in order to determine when to refresh the statistics values and when and how to adjust the set of statistics that the DBMS maintains. In this paper we describe the new Automated Statistics Collection (ASC) component of IBM® DB2® Universal DatabaseTM (DB2 UDB). This autonomic technology frees the DBA from the tedious task of manually supervising the collection and maintenance of database statistics. ASC monitors both the update-delete-insert (UDI) activities on the data as well as query feedback (QF), i.e., the results of the queries that are executed on the data. ASC uses these two sources of information to automatically decide which statistics to collect and when to collect them. This combination of UDI-driven and QF-driven autonomic processes ensures that the system can handle unforeseen queries while also ensuring good performance for frequent and important queries. We present the basic concepts, architecture, and key implementation details of ASC in DB2 UDB, and present a case study showing how the use of ASC can speed up a query workload by orders of magnitude without requiring any DBA intervention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost-based optimization in DB2 XML

A. Balmin T. Eliaz J. Hornibrook L. Lim G. M. Lohman D. Simmen M. Wang C. Zhang DB2 XML is a hybrid database system that combines the relational capabilities of DB2 Universal Databasee (UDB) with comprehensive native XML support. DB2 XML augments DB2t UDB with a native XML store, XML indexes, and query processing capabilities for both XQuery and SQL/XML that are integrated with those of SQL. Th...

متن کامل

Performance Analysis and Tuning for DB2 UDB

This paper is based on the Author’s experiences in performance analysis and tuning for DB2 UDB on distributed platforms. The paper is intended as an introduction to DB2 performance, particularly for those who already have a grasp of relational database concepts through products like SQL Server or Oracle. The paper compares and contrasts DB2 and Oracle, describes the primary sources of DB2 perfo...

متن کامل

Performance of DB2 Enterprise-Extended Edition on NT with Virtual Interface Architecture

DB2 Universal Database Enterprise-Extended Edition (DB2 UDB EEE) is a parallel relational database management system using a sharednothing architecture. DB2 UDB EEE uses multiple nodes connected by an interconnect and partitions data across these nodes. The communication protocol used between nodes of DB2 UDB EEE has historically been Transmission Control Protocol (TCP) / Internet Protocol (IP)...

متن کامل

Workload Characterization and Capacity Planning for DB2 Universal Database

DB2 UDB is a complex, multi-tier, distributed database with parallel execution features. To track resource use and performance of many applications and users putting a load on this environment requires acquisition and processing of data from different sources. This paper describes architectural features of DB2 UDB relevant for workload analysis and an approach to producing workload characteriza...

متن کامل

Automated design of multidimensional clustering tables for relational databases

The ability to physically cluster a database table on multiple dimensions is a powerful technique that offers significant performance benefits in many OLAP, warehousing, and decision-support systems. An industrial implementation of this technique for the DB2® Universal DatabaseTM (DB2 UDB) product, called multidimensional clustering (MDC), which co-exists with other classical forms of data stor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004